Transcriptomic immaturity of the hippocampus and prefrontal cortex in patients with alcoholism

نویسندگان

  • Tomoyuki Murano
  • Hisatsugu Koshimizu
  • Hideo Hagihara
  • Tsuyoshi Miyakawa
چکیده

Alcoholism, which is defined as the recurring harmful use of alcohol despite its negative consequences, has a lifetime prevalence of 17.8%. Previous studies have shown that chronic alcohol consumption disrupts various brain functions and behaviours. However, the precise mechanisms that underlie alcoholism are currently unclear. Recently, we discovered "pseudo-immature" brain cell states of the dentate gyrus and prefrontal cortex (PFC) in mouse models of psychotic disorders and epileptic seizure. Similar pseudo-immaturity has been observed in patients with psychotic disorders, such as schizophrenia and bipolar disorder. Patients with alcoholism occasionally exhibit similar psychological symptoms, implying shared molecular and cellular mechanisms between these diseases. Here, we performed a meta-analysis to compare microarray data from the hippocampi/PFCs of the patients with alcoholism to data from these regions in developing human brains and mouse developmental data for specific cell types. We identified immature-like gene expression patterns in post-mortem hippocampi/PFCs of alcoholic patients and the dominant contributions of fast-spiking (FS) neurons to their pseudo-immaturity. These results suggested that FS neuron dysfunction and the subsequent imbalance between excitation and inhibition can be associated with pseudo-immaturity in alcoholism. These immaturities in the hippocampi/PFCs and the underlying mechanisms may explain the psychotic symptom generation and pathophysiology of alcoholism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Trigonelline on Dendritic Morphology in the Hippocampus and Prefrontal Cortex in Streptozotocin-Induced Diabetic Rats

Introduction: Diabetes mellitus causes adverse changes in the neurological morphology of the hippocampus and prefrontal cortex of the brain by increasing oxidative stress. Trigonelline has antihyperglycemic effects and can inhibit oxidative stress. The aim of this study was to evaluate the protective effect of trigonelline on dendritic changes in hippocampal and prefrontal cortex neurons in dia...

متن کامل

P38: Neuroanatomy of Post Traumatic Stress Disorder

Posttraumatic stress disorder (PTSD) is a disorder of emotional and mental stress occurring as an outcome of injury or severe emotional shock. Several Neuroimaging studies in humans have shown the functions and relationship between the anatomical changes of brain and PTSD. The three major areas of the brain are affected by PTSD .These three areas are the amygdala, hippocampus and prefrontal cor...

متن کامل

P2: Neocortex and Memory

The human prefrontal cortex differs from all other mammals: the seat of complex cognition, abstract thinking, planning and future forecasting, and behavioral inhibition. Using our prefrontal cortex is a significant energy drain on the body, so despite its impressive capabilities, it’s daily capacity is limited. Some researchers estimate a mere 2-3 hours per day of activity depletes the pr...

متن کامل

P152: Functional and Structural Brain Changes across Childhood Traumatic Events

Although childhood is connected with high neuroplasticity changes, but because of the immaturity of the neural and cognitive systems, it is ready to grow developmental deviations and future susceptibility for neuropsychological disorders. Young children face cognitive, emotional, and linguistic limits that may lead them more vulnerable to post-traumatic stress disorder (PTSD). PTSD prevalence d...

متن کامل

Human chorionic gonadotropin attenuates amyloid-β plaques induced by streptozotocin in the rat brain by affecting cytochrome c-ir neuron density

Objective(s): Amyloid β plaques, in Alzheimer’s disease, are deposits in different areas of the brain such as prefrontal cortex, molecular layer of the cerebellum, and the hippocampal formation. Amyloid β aggregates lead to the release of cytochrome c and finally neuronal cell death in brain tissue. hCG has critical roles in brain development, neuron differentiation, and function. Therefore, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017